	Source class

Abstract audio source.

class Source

{

public:

 virtual Speakers get_output() const = 0;

 virtual bool is_empty() const = 0;

 virtual bool get_chunk(Chunk *chunk) = 0;

};

get_output() [thread-safe, fast]

Reports format of next output chunk. Primary purpose of this call is to setup downstream before processing. When source is empty (is_empty() == true) it may report any format and may change it. However, unjustified format change should be avoided because it may lead to unwanted changes at downstream. When source is full (is_empty() == false) it must report format exactly as it will appear at the next output chunk and cannot change it without reason such as change of source parameters. So output format may change only in following cases (see Format change rules for more info):

1) after get_chunk() call because format of the next chunk may be different

2) when is_empty() == true (should be avoided)

3) call to descendant’s class functions (only at working thread) such as parameters change, reinitialize, etc.

Last case means that all source parameters that may affect output format must be implemented as interface functions and not as member variables.

is_empty() [thread-safe, critical path]

Checks the source that it ready to produce a chunk. Empty source (is_empty() == true) cannot produce a chunk but full source (is_empty() == false) can. Depending on source type it may require some explicit actions to fill (like filters where we must call process() to fill the filter) or it may be filled asynchronously (like audio capture). Note that ‘full’ state means that source is ready to produce a chunk but it does not mean that this chunk will be data-chunk. For example, source may produce an empty chunk because of stream event.

We must not call get_chunk() when source is empty because it may disrupt internal source state.

After source became full it cannot change its mind and must remain in this state until get_chunk() call or other good reason. So source may go from full to empty state only in following cases:
1) after get_chunk() call because source have no more data

2) call to descendants' class functions (only at working thread) such as parameters change, reinitialize, etc.

Last case means that all source parameters that may affect source state must be implemented as interface functions and not as member variables.

get_chunk() [working thread, critical path]

Get new chunk from source. Always check that source is full with is_empty() call before calling this function. Source must guarantee that we can safely change data in buffer returned because it is necessary for in-place processing. This call must not block working thread waiting for data. Instead source must report empty state until it have enough data to output.

	Sink class

Abstract audio sink.

class Sink

{

public:

 virtual bool query_input(Speakers spk) const = 0;

 virtual bool set_input(Speakers spk) = 0;

 virtual Speakers get_input() const = 0;

 virtual bool process(const Chunk *chunk) = 0;

};

query_input() [thread-safe, fast]

Queries the sink that it can change input format. Format support may depend on sink parameters, hardware support, shared resources, etc. So success of this call ensures that nothing prevents format change and we can expect it to succeed.

Should work as fast as possible because it may be used to try numerous formats to find acceptable conversion.

set_input() [working thread, blocking]

Change input format. If sink has buffered data it should immediately drop it, stop playback and prepare to receive new data even if we change format to the same one (forced format change). This allows fast stream change even for new stream with the same format.

If this function fails it must either leave sink in correct state and old input format (get_input() must report old format) or require sink to reinitialize (get_input() must report FORMAT_UNKNOWN).

This call should succeed after successful query_input() call if it was no state-changing calls in between. But it is possible that allocation of shared resources (SPDIF output for example) may fail even after successful query_input() call.

It may require some time to change format (initialize the output device, allocate buffers, etc) and it may block the working thread waiting for resources.

get_input() [thread-safe, fast]

Report current input format. This call must report new format immediately after input format change. If function reports FORMAT_UNKNOWN it means that sink is not initialized (after creation, errors, etc) and cannot proceed. Others must not call process() function on uninitialized sink.

Input format may change only in following cases (see Format change rules for more info):

1) after set_input() call

2) process() call if chunk format differs from current input format

3) call to descendants’ class function (only at working thread)

Last case means that all sink parameters that may affect input format must be implemented as interface functions and not as member variables.

process() [working thread, critical path]

Receive and process chunk. This function must carry about possible stream events. Sink may use buffering so successful function exit does not mean that all data was processed. For audio renderers this call may block working thread during audio playback.

If format of the received chunk differs from current input format sink must change input format. Generally to handle format changes process() should use set_input() call. If format change fails process() must also fail.

Fail of this function means that correct audio playback was interrupted. Audio renderer must stop playback and drop buffered data. get_input() must report FORMAT_UNKNOWN if the sink requires to reinitialize. Reasons to fail may be:

1) format change failure (including internal format change for aggregate filters)

2) data has an error that is impossible to handle

3) hardware failure

	Filter class

Abstract data processing class.

class Filter: public Sink, public Source

{

public:

 virtual void reset() = 0;

 virtual bool query_input(Speakers spk) const = 0;

 virtual bool set_input(Speakers spk) = 0;

 virtual Speakers get_input() const = 0;

 virtual bool process(const Chunk *chunk) = 0;

 virtual Speakers get_output() const = 0;

 virtual bool is_empty() const = 0;

 virtual bool get_chunk(Chunk *chunk) = 0;

 inline bool process_to(const Chunk *chunk, Sink *sink);

 inline bool get_from(Chunk *chunk, Source *source);

 inline bool transform(Source *source, Sink *sink);

};

Filter is sink and source at the same time so it follows all rules for Sink and Source classes. New rules for filters are more strong versions of base rules for source and sink interfaces.

reset() [working thread]

Reset filter state to empty, drop all internal buffers and release all external references that filter may have.

process() [working thread, critical path]

May be used for data processing. Do main processing here if filter produces exactly one output chunk for one input chunk.

get_chunk() [working thread, critical path]

May be used for data processing. Do main processing here if filter may produce many output chunks for one input chunk.

