	Chunk

This structure is used to transfer audio data and stream events from an audio source to an auido sink (see Source and Sink classes below).

Structure consists of:

· Data format

· Audio data

· Syncronization data

· End of stream flag

Following stream events possible:

· Format change

· Syncronization

· End of stream

Data format

Chunk always carries the data format in the ‘spk’ field.

It is a special kind of chunk named ‘dummy chunk’ that has spk_unknown format. All this chunks must be totally ignored (other fields must be ignored too). The reason of this chunks is that in some cases source know nothing about next chunk (moreover source may not know is it empty or full) until next get_chunk() call. In this source reports full state and if it cannot generate a chunk on next get_chunk() call it produces dummy chunk. It is a special function is_dummy() to determine dummy chunk.
Audio data

Chunk may carry audio data. There’re two kinds of data possible: raw data and channel samples (linear format). Raw data is a simple continuous block of binary data. It may be PCM data, encoded data (AC3, DTS) or something else. Linear format data is a set of continuous PCM blocks for each channel. PCM data in raw form is interleaved and may have different sample formats so it’s hard to work with it. Linear format data has linear buffers for each channel and fixed sample format (sample_t). Most of internal audio processing is done on linear format but input and output must be raw. Therefore, considering the importance of both kinds of data chunk structure may carry both. So ‘rawdata’ field is a pointer to a raw buffer and ‘samples’ field is a set of pointers to sample buffers for each channel.

We can find data format with ‘spk’ field. If it indicates FORMAT_LINEAR then ‘samples’ field must be filled and ‘rawdata’ field is undefined. Any other format (except FORMAT_UNKNOWN that must be ignored) means that ‘samples’ field is undefined and ‘rawdata’ field has correct pointer. We must not use an undefined field.

All data formats have buffer size. In case of raw data it means size of data buffer pointed by ‘rawdata’ pointer in bytes. In case of linear format it means number of samples at each channel buffer. All channel buffers have the same number of samples.

Also chunk may contain no data (an empty chunk). Such chunks may be used to inform downstream about different events without sending data. Empty chunk has ‘size’ field set to zero. It is a special function is_empty() to clarify this statement. In empty chunks both data pointers are considered to be invalid and must not be used.
Syncronization data

Chunk may contain a timestamp that indicates position in the stream. Such chunk is called syncronization chunk (sync-chunk). ‘sync’ field indicates that we have correct timestamp and ‘time’ field indicates position in the stream. Time is specified in seconds from the beginning of the stream or in any other reasonable base time.

Time stamp is applied to the first syncpoint of incoming data. Where syncpoint is:

· each sample for linear format

· first byte of interleaved PCM sample for PCM format (because PCM data transmission may not be sample-aligned)
· first byte of a packet for packeted format (ac3/dts/mpa/pes, etc)

· reasonable place for other formats (should be documented)

Example 1. Filter receives a timestamped chunk of raw PCM data beginning from half-a-sample. In this case ‘tail’ of previously received half of sample must be processed with old time and new time must be applied to the next sample.

Example 2. Filter receives a timestamped chunk with part of an ac3 frame (no syncpoints in data). In this case timestamp must be applied to the first syncpoint received with following chunk(s). I.e. filter must remember timestamp to apply it afterwards. To help a filter with this use Sync class. (see Sync class at sync.h for more information).

End of stream flag

End-of-stream chunk (eos-chunk) is a method to correctly finish the stream. eos-chunk may contain data and stream is assumed to end after the last byte/sample of this chunk. ‘eos’ field indicates an eos-chunk.

Format change event

There are 2 ways to change stream format and start a new stream:

· Flushing. Send an eos-chunk with old format before sending chunk with new one or before set_input() call. In this case all buffered data must be released from internal buffres and sent to the output. Flushing is used to correctly finish the playback.

· Forced format change. Send a chunk with new format without flushing or call set_input(). In this case sink must drop all internal buffers immediately without waiting this data to playback and switch to new format. This method provides fast format change.

(Of course new format must be supported by the filter).
Syncronization event

Audio source may indicate position in the stream. All filters must pass this informtion correctly according to syncronization rule (see Syncronization data).

End of stream event

After receiving of eos-chunk sink must guarantee that all buffered data and data received with eos-chunk is sent to output. Filter must mark last chunk sent as eos-chunk to force downstream to flush. Flushing guarantees that all data is processed correctly and we don’t loose audio tail because of buffering.

	Chunk class

class Chunk

{

public:

 Speakers spk;

 uint8_t *rawdata;

 samples_t samples;

 size_t size;

 bool sync;

 vtime_t time;

 bool eos;

public:

 Chunk()

 Chunk(Speakers spk, bool sync = false, vtime_t time = 0, bool eos = false)

 Chunk(Speakers spk, samples_t samples, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 Chunk(Speakers spk, uint8_t *rawdata, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 Chunk(Speakers spk, uint8_t *rawdata, samples_t samples, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 void set_dummy()
 void set_empty(Speakers spk, bool sync = false, vtime_t time = 0, bool eos = false)

 void set_linear(Speakers spk, samples_t samples, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 void set_rawdata(Speakers spk, uint8_t *rawdata, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 void set(Speakers spk, uint8_t *rawdata, samples_t samples, size_t size, bool sync = false, vtime_t time = 0, bool eos = false)

 inline bool is_dummy() const
 inline bool is_empty() const

 inline void drop(size_t size)

};

