Format change rules

for base interfaces

	Source


[s1] When source is full it must report output format exactly as it will appear at next output chunk.

[s2] Output format may change only in following cases:

1) get_chunk() call

2) when is_empty() == true (should be avoided)

3) call to a descendant’s class function (only at working thread).

[s3] Source may generate dummy chunks.

	Sink


[k1] Input format must be equal to spk_unknown when sink requires initialization (after creation, errors, etc). Others must not call processing functions on uninitialized sink.

[k2] Input format may change only in following cases:

1) set_input() call.

2) process() call if chunk format differs from current input format.

3) call to descendant’s class function (only at working thread).

If format change fails input format must stay unchanged or change to spk_unknown.

[k3] Format change call should succeed after successful query_input() call.

[k4] get_output() must report new format immediately after format change.

[k5] Sink must ignore dummy chunks. I.e. it must not change its state (either external and internal) after receiving dummy chunk.

	Filter


[f1] If output format depends on input data (parser, demuxer, etc) get_output() must report spk_unknown after following:

1) reset() call

2) input format change (see [k2] rule)

3) flushing

4) call to descendant’s class function (only at working thread) that may affect output format.

Filter must change its output format according to [s2] rule.

[f2] If output format doesn't depend on input data it may change only in following cases:

1) input format change (see [k2] rule)

2) call to descendant’s class function (only at working thread)

Filter cannot change its output format during processing in this case.

[f3] It is possible that for some input formats output format may depend on input data and for some it doesn't. In this case for dependent formats filter must follow [f1] rule and [f2] rule for independent.

[f4] If output format changes according to [f2.2] rule to format that is incompatible with current input format input format must change to spk_unknown indicating that input should be reinitialized according to [k1] rule.

[f5] Filter must be empty and have drop internal buffers in following cases:

1) in uninitialized state (input format equals to spk_unknown)

2) reset() call

3) input format change (see [k2] rule) either successful or not.

4) call to descendant’s class function (only at working thread) that may affect input/output format
Summary of filter format changes:
	
	Input format
	Output format
	Output format  (ofdd)

	reset()
	-
	-
	spk_unknown

	set_input()
	+
	+
	spk_unknown

	process() (no format change)
	-
	-
	+

	process() (format change)
	+
	+
	+

	get_chunk()
	-
	-
	+


ofdd – when output format is data-dependent

Examples of format change

	Source


Rules [s1], [s2] and [s3]:

if (!source.is_empty())

{

  spk1 = source.get_output();

  assert(spk1 != spk_unknown);

  source.get_chunk(chunk1);

  assert(chunk1.spk == spk1);

  ...

  if (!source.is_empty())

  {

    spk2 = source.get_output();

    assert(spk1 != spk_unknown);

    source.get_chunk(chunk2);

    assert(chunk2.spk == spk2);

    // note that spk2 may differ from spk1

  }

}

	Sink


Rule [k3]:

if (sink.query_input(spk))

  assert(sink.set_input(spk));

if (sink.query_input(chunk.spk))

  assert(sink.process(chunk));

Rule [k4]:
if (sink.query_input(spk))

{

  assert(sink.set_input(spk));

  assert(spk == sink.get_input());

}

if (sink.query_input(chunk.spk))

{

  assert(sink.process(chunk));

  assert(chunk.spk == sink.get_input());

}

	Filter


Rules [f1] and [s1]

filter.reset();

assert(filter.get_output() == spk_unknown); // output format depends on data

...

if (!filter.is_empty())

{

  spk = filter.get_output();

  filter.get_chunk(chunk);

  assert(chunk.spk == spk);

}

Rule [f2]

filter.reset();

assert(filter.get_output() != spk_unknown); // output format doen’t depend on data

spk = filter.get_output();

... (no format changes) ...

if (!filter.is_empty())

{

  filter.get_chunk(chunk);

  assert(chunk.spk == spk);

}

Rule [f4] and [f5]

some_filter.set_output(spk_output);

if (filter.get_input() == spk_unknown)

{

  // input format is incompatible with new output format

  // and we have to reinitialize filter

  ...

  if (!some_filter.set_input(spk_input))

    * cannot setup filter

  ...

}

else

{

  // input format is ok and we may not reinitialize filter

  ...

}

// filter must be empty because output format was changed

assert(some_filter.is_empty());

Format change rules

Notes and unsolved problems

	Filter


· If input format equals to spk_unknown output format is undefined and must not be used.

· If any function fails input format must stay unchanged or change to spk_unknown.

· If any function fails output format must change to spk_unknown in data-dependent mode.

· … need to consider failures in more details …

· Source must generate dummy chunk in empty state?
